
DOI: 10.4018/IJCAC.342128

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

IIoT Protocols for Edge/Fog and
Cloud Computing in Industrial AI:
A High Frequency Perspective
Telmo Fernández De Barrena Sarasola, Faculty of Engineering, University of Deusto, Mundaitz Kalea, 50, 20012
Donostia- San Sebastian, Spain & Department of Data Intelligence for Energy and Industrial Processes, Fundación
Vicomtech, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastian, Spain*

 https://orcid.org/0000-0001-8577-1995

Ander García, Department of Data Intelligence for Energy and Industrial Processes, Fundación Vicomtech, Basque
Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastian, Spain & Faculty of
Engineering, University of Deusto, Mundaitz Kalea, 50, 20012 Donostia- San Sebastian, Spain

Juan Luis Ferrando, Department of Data Intelligence for Energy and Industrial Processes, Fundación Vicomtech, Basque
Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastian, Spain

ABSTRACT

Various industrial applications deal with high-frequency data. Traditionally, these systems have
analyzed high-frequency data directly on the data source or at the commanding PLC. However,
currently, Industry 4.0 technologies support new monitoring scenarios for high-frequency data
monitoring where raw data is transmitted in soft-real time to an Edge/Fog or Cloud node for processing,
enabling centralized computing. This demands efficient communication protocols capable of handling
high-frequency, high-throughput data. This paper focuses on analyzing the performance of key
IIoT (Industrial Internet of Things) messaging protocols—AMQP, MQTT, KAFKA, ZeroMQ, and
OPCUA—to evaluate their suitability, in terms of latency and jitter, for transmitting high-frequency
data within these new scenarios. The analysis reveals MQTT, AMQP, and ZeroMQ as top performers
in Edge/Fog computing, while ZeroMQ exhibits the lowest latency and jitter in Cloud computing.
Finally, a guideline for protocol selection is proposed, aiding industrial enterprises in protocol selection
for specific AI use cases.

KEywoRdS
Cloud Computing, Edge/Fog Computing, High Frequency Signals, IIoT Protocols, Industry 4.0

Traditional industrial automation engineering workflows have long relied on PLC (Programmable
Logic Controller) or SCADA (Supervisory Control And Data Acquisition) systems to manage
processes and machines. These systems, typically proprietary products from companies like Siemens,
Beckhoff, or GE Digital, are programmed using specific tools provided by their manufacturers. They
primarily offer control functionalities rooted in classical control engineering and often work in relative
isolation, receiving external orders with limited internal data sharing.

https://orcid.org/0000-0001-8577-1995

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

2

However, the advent of the Industry 4.0 paradigm has imposed new demands on these systems,
necessitating enhanced data sharing and utilization. Manufacturing lines are generating an escalating
volume of data, prompting the monitoring of more variables at higher frequencies. This shift involves
capturing data that ranges from a few critical variables per batch to time series data of multiple
variables recorded at frequencies of seconds or even greater (Garcia et al., 2023).

In typical industrial scenarios, the flow of high-frequency data begins with sensors strategically
placed on machinery to capture relevant signals such as vibration, sound, or acceleration. These
sensors collect data at high sampling rates, from thousands to millions of data points per second,
generating a stream of raw information (Fernández de Barrena Sarasola et al., 2023; Kuntoğlu et al.,
2021) and huge volumes of data (Kumar & Agrawal, 2023). This data usually undergoes preprocessing
in the machine to filter out noise and irrelevant information, ensuring the accuracy and reliability of
subsequent analysis. Advanced signal processing algorithms are then applied to extract meaningful
features and patterns from the data, making possible the development of Artificial Intelligence (AI)-
based models for the creation of predictive maintenance, quality control, and similar scenarios to
classify anomalies, predict failure probabilities, and recommend appropriate maintenance actions.

However, the Industry 4.0 paradigm is changing the way in which data is processed, making
it possible to send raw data either to the edge/fog or to the cloud from the sensors and centralize
the processing and machine learning (ML) models or expert systems deployment steps. Thus, there
is a need to create systems able to efficiently handle data at high throughputs. Here, the employed
protocols and network play a key role.

To face these new requirements, new architectures are required to integrate the Information
Technology (IT) and Operations Technology (OT) fields. The convergence of IT and OT represents
a paradigm shift, breaking down historical barriers and fostering a unified framework where data,
traditionally confined to either the enterprise or the operational field, can flow seamlessly between
both. This integration has opened the way to a new era of interconnected and intelligent systems,
enabling the optimization of operational processes and the development and integration of data-driven
methods, which bring industries greater agility and competitiveness (Nath et al., 2020).

The combination of AI and ML in industrial processes further amplifies the potential of the IT
and OT convergence. ML algorithms, deployed at the edge/fog or within the cloud, empower systems
to detect patterns, predict failures, and optimize performance autonomously (Lecun et al., 2015).
From predictive maintenance to anomaly detection, ML applications are reshaping the way industries
operate, providing intelligence into every layer of the value chain (Alshehri & Muhammad, 2021).

In the pursuit of enhanced efficiency and soft-real-time decision making, the integration of
edge/fog and cloud computing has emerged as a cornerstone in modern industrial communication
frameworks (Kumar & Agrawal, 2023). Cloud computing is widely regarded as a crucial tool
for meeting the computing needs of resource-intensive applications. However, the cloud shows
communication delays and saturated networks due to a lack of bandwidth, which is due to the
information overload caused by the scaling of Internet of Things (IoT) devices (Oñate & Sanz, 2023).
The drawbacks associated with cloud computing present challenges in meeting the performance
demands of time-sensitive applications, such as augmented reality, autonomous driving, and interactive
online gaming (Mao et al., 2021).

Edge/fog computing brings computation closer to data sources, reducing latency and enabling
rapid analysis of vast datasets (Mao et al., 2022; Shi et al., 2016). This proximity to data generation
points is particularly vital in industries where timely insights can dictate operational success (Fernández
de Barrena Sarasola et al., 2023).

Distributed deployment of real-time applications and high-speed dissemination of massive data are
key features of Industrial Internet of Things (IIoT) platforms. IIoT applications typically adopt publish/
subscribe (pub/sub) middleware for asynchronous and cross-platform communication. Communication
protocols play a key role in this integration, enabling the secure and efficient exchange of data across
heterogeneous systems. The landscape of available protocols is diverse, offering a spectrum of choices

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

3

tailored to different industrial needs (Ullah et al., 2020), such as Message Queuing Telemetry Transport
(MQTT), Zero Message Queuing (ZeroMQ) and Data Distribution Service (DDS). Understanding
the strengths, weaknesses, and interoperability of these protocols is crucial for building resilient,
future-proof communication infrastructures (Kang & Dubey, 2020).

Under the context of IIoT, the manufacturing industry is moving toward the servitization of servers’
allocation, to centralize the computing resources and to minimize the cost and effort associated with
deploying and maintaining servers. This, along with the integration of communication protocols,
enables the development and integration of data-driven methods, which bring industries greater
agility and competitiveness. Thus, the knowledge and monetary cost of deploying AI models for
different tasks, such as prognosis and health management (PHM) and production optimization, can
be significantly reduced. For performing those tasks, communication protocols plays a key role,
enabling secure and efficient exchange of data across heterogeneous systems.

However, after analyzing the existing research in the literature, the researchers of this paper
observe that there is a need to analyze the performance of different protocols such as Advanced
Messaging Queuing Protocol (AMQP), MQTT, KAFKA, ZeroMQ, and OP CUA, under cloud and
edge/fog network and high frequency data scenarios, to understand the strengths and weakness of these
protocols. Different features are relevant for this analysis, such as stream mean and standard deviation
latency and jitter, the variation in the latency on a stream flow between two systems. These features
must be measured and analyzed to gain a clear vision about which networking approach (edge/fog or
cloud) and protocol each user should choose to fulfill its use case requirements. For example, jitter,
which is not a widely analyzed element, plays a key role, especially in real-time communications, as
high values of this element result from network congestion, timing drift and inconsistencies, which
degrade the quality of communications.

The nature of IIoT protocols is one of the main drawbacks when using them in soft real-time
performance scenarios. Figure 1 reveals the differences between OT and IT protocols latency
distributions. OT-based solutions are designed to minimize jitter, which is the variation in time
delay between when a signal is transmitted and when it is received over a network connection, and
to provide near-real-time deterministic behavior down to the millisecond. When having a specific
maximum latency requirement, t + ∆t, due to its deterministic nature, OT protocols can ensure fixed
range latencies. Figure 1 shows an ideal OT protocol latency distribution, having a jitter of 0, and thus
a single latency value, represented as a blue vertical line. Unlike OT protocols, the data transfer times
of IT ones follow a probability positively skewed time distribution, shown in blue in the right side
of Figure 1. In this case, IT protocols cannot ensure fixed-range latencies, resulting in the possibility
of having higher latencies than required.

For the abovementioned reasons, this paper compares the performance of different IIoT protocols
working along with high frequency data in edge/fog and cloud scenarios. Thus, different key parameters
such as latency, jitter, lost or not-ordered packages, etc. are measured under different working
conditions, changing the sampling frequency and stream sizes, and consequently the throughput. As
results in terms of absolute time values are highly dependent on the employed network characteristics,
this research focuses on a normalized comparison of the protocols performance. Moreover, needed code
for replicating the experiments and obtained results is provided here: https://github.com/Vicomtech/
IIOT-protocols-study-for-high-frequency-data-in-the-edge-and-cloud/tree/main. Computational
overhead of each of the tested protocols has also been analyzed.

The initialisms and acronyms used in this paper are listed in Table 1 with their definitions.
This research intends to provide guidelines on which protocol to employ, depending on the use

case requirements, for developing efficient architectures, centralizing as much as possible the needed
computing load in the edge/fog or cloud, where more resources are available. Thus, the main objective
of this paper is to ease the selection of optimum IIoT communication protocols to obtain the best
performance in terms of latency and jitter when working with high-frequency data and sending it to

https://github.com/Vicomtech/IIOT-protocols-study-for-high-frequency-data-in-the-edge-and-cloud/tree/main
https://github.com/Vicomtech/IIOT-protocols-study-for-high-frequency-data-in-the-edge-and-cloud/tree/main

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

4

the edge/fog or cloud. This is a key point when integrating soft AI models, such as PHM models, into
cyber-physical systems (CPS), and deploying data-based models in the edge/fog or cloud.

The remainder of this paper is organized as follows: Section 2 presents the state of the art.
Section 3 presents an overview of the analyzed protocols. Section 4 describes the experimental setup
for performing the experiments. Section 5 presents the methodology followed in performing the

Figure 1. OT and IT Data Transfer Times Distributions

Table 1. List of Initialisms and Acronyms Used in This Paper

Abbreviation Definition

PLC Programmable Logic Controller

SCADA Supervisory Control And Data Acquisition

AI Artificial Intelligence

ML Machine Learning

IT Information Technology

OT Operational Technology

IoT Internet of Things

IIoT Industrial Internet of Things

MQTT Message Queuing Telemetry Transport

DDS Data Distribution Service

AMQP Advanced Message Queuing Protocol

PHM Prognostics and Health Management

CPS Cyber Physical Systems

CoAP Constrained Applications Protocol

RTPS Real Time Publish Subscribe

JMS Java Message Service

ROS Robot Operating System

RTT Round-Trip Time

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

5

experiments. Section 6 shows the results obtained by the performed experiments. Finally, Section 7
offers concluding remarks.

STATE oF THE ART

Several studies have been found comparing the performance of different IoT communication protocols.
The studies were performed employing different hardware components, such as Arduino, Raspberry
Pi, etc.

Naik (2017) described the properties of MQTT, CoAP, AMQP, and HTTP protocols, comparing
them looking at different parameters. The message size, frame size, energy consumption, resource
requirement, bandwidth usage, latency, stability, supported platforms, security, IoT compliance, and
standardization parameters were analyzed. The study was based on different scientific studies, not
providing an experimental environment.

Bayılmıs et al. (2022) claimed that there is no general model, approach, or benchmark for
performance comparison because the ranges of the IoT-based applications are so versatile. In this
study differences in energy consumption and throughput for IoT application layer communication
protocols, such as Constrained Applications Protocol (CoAP), MQTT, and WebSocket on tiny IoT
devices, were analyzed. Lombardi et al. (2021) discussed the existing framework architectures,
technologies, protocols, and applications under the IoT paradigm.

Chaudhary et al. (2017) compared MQTT, CoAP, and AMQP protocols in wired, wireless and
4G connections, employing Raspberry Pi3 as IoT devices. Dizdarevic et al. (2019), performed a
theoretical survey of IoT communication protocols, including MQTT, AMQP, XMPP, DDS, HTTP,
and CoAP. Latency, energy consumption, and network throughput parameters were analyzed.

Safarov (2018), employing local Wi-Fi and a Raspberry Pi B on the client side and a laptop with i7
processor on the server side, compared WebSocket, MQTT, and CoAP. Using a mathematical method,
throughput parameters on different stream loss rates and the effect of the frame sizes were examined.

Gavrilov et al. (2022) analyzed MQTT, Real Time Publish Subscribe protocol (RTPS, an
interoperability protocol for DDS implementations), Java Message Service (JMS), and AMQP
protocols to find out what tasks these protocols should be used for and whether they can be used
in robotic and autonomous systems where high data transmission requirements are imposed. They
concluded that RTPS is the best solution for real-time systems with different traffic and that MQTT
performs well when transmitting short messages.

Profanter et al. (2019) gave an overview on the different features of OPC UA, Robot Operating
System (ROS), DDS, and MQTT and compared their performance in several benchmarks. They
concluded that open62541, which is an open source and free implementation of OPC UA, and eProsima
FastRTPS for DDS, deliver high performance, whereas the MQTT and ROS implementations showed
a significant slowdown in the round-trip time (RTT) of packages sent to the server.

Suri (2019) compared different protocols over an edge network. The results showed that the
ZeroMQ implemented outperformed other protocols such as DDS, MQTT, AMQP, and Kafka in terms
of bandwidth utilization and latency when they operated in a saturated communications environment.

Lazidis et al. (2022) conducted a survey and taxonomy of publish–subscribe systems, of their
design features and technologies. The latency of Orion-LD, Stellio, Scorpio, Pushpin, Faye, Apache
Kafka, and RabbitMQ were compared, concluding that for heavy workloads, Apache Kafka and
RabbitMQ proved to be fast and scalable.

Finally, Kang and Dubey (2020) empirically evaluated the performance of three pub/sub
technologies: OMG DDS, MQTT, and ZeroMQ, for representative IIoT scenarios (high-frequency,
periodic, and sporadic) under a cluster with a bandwidth of 95 Mbps. Results showed that in the higher-
frequency scenarios, when the message was smaller than 1 KB, ZeroMQ performed best. However,
when the message was larger than 1KB, ZeroMQ throughput became lower than DDS. Compared

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

6

with DDS and ZeroMQ, the throughput of MQTT was poor at the broker-centric architecture used
in the paper.

To the authors’ knowledge, no analysis has been performed on the latency and jitter values of IIoT
protocols working along with high frequency data in edge/fog and cloud scenarios. For this reason,
the present research compares the performance of different IIoT protocols working along with high-
frequency data in edge/fog and cloud scenarios, analyzing different key parameters such as latency,
jitter, lost or not-ordered packages, etc. The authors consider the analysis of jitter in high-frequency
scenarios a key point, as it significantly impacts network performance by introducing irregularities
and variations in the transmission of data streams.

PRoToColS ovERvIEw

In this section, an introduction of the tested protocols under edge/fog and cloud scenarios is presented.
AMQP, MQTT, and KAFKA are broker dependent and are used with a pub/sub approach. ZeroMQ
is employed using the same approach, but being brokerless and opening sockets. OP CUA is tested
using a client/server approach.

AMQP
The AMQP is an open standard for passing business messages between applications or organizations.
It connects systems, feeds business processes with the information they need, and reliably transmits
onward the instructions that achieve their goals (AQMP, 2023).

In this paper, for implementing the AMQP standard, RabbitMQ has been employed as an open-
source message broker. Ionescu (2015) provides detailed information about this message broker.
Moreover, Pika (version 1.3.1) client library, which is a RabbitMQ (AMQP 0-9-1) client library for
Python, has been utilized.

MQTT
MQTT is an OASIS standard messaging protocol for the Internet of Things (IoT). It is designed as an
extremely lightweight pub/sub messaging transport that is ideal for connecting remote devices with
a small code footprint and minimal network bandwidth. Today MQTT is used in a wide variety of
industries, such as automotive, manufacturing, telecommunications, oil and gas, etc. (MQTT, 2022).
Suri (2019) provides detailed information about this protocol.

In this paper, the MQTT standard has been implemented through Eclipse Mosquitto, as open-
source message broker. Moreover, Paho MQTT (version 1.6.1) client library, which is an Eclipse
Mosquitto client library for Python, has been employed.

Apache KAFKA
Apache Kafka is an open-source distributed event streaming platform for high-performance data
pipelines, streaming analytics, data integration, and mission-critical applications. It provides a pub/
sub messaging model for data production and consumption and supports the ability to access data in
real time for stream processing by allowing long-term storage of data (Apache Software Foundation,
2023). Kafka was designed from the ground up to provide long-term data storage and data replay. It
has a unique approach to data persistence, fault tolerance, and replay. This approach can be seen in
how it handles scalability by allowing data access using cross-partition data sharing, topics/partitions,
data offsets, and consumer group names for data replication persistence in clusters, increased data
volume, and load. Apache Kafka is also well suited for real-time stream processing applications
because it is designed to act as a communication layer for real-time log processing. This capability
makes Apache Kafka suitable for applications running on communications infrastructure that process
large amounts of data in real time (Nam et al., 2022).

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

7

In this paper, for implementing this platform, Confluent-Kafka-Python (version 2.2.0), which is
a Python client that provides a high-level producer, consumer, and AdminClient that are compatible
with Kafka brokers, has been deployed.

ZeroMQ
ZeroMQ looks like an embeddable networking library but acts like a concurrency framework. It
provides sockets that carry atomic messages across various forms of transport such as in-process,
inter-process, TCP, and multicast. Sockets can be connected as N-to-N with patterns like fan-out,
pub/sub, task distribution, and request-reply. ZeroMQ’s asynchronous I/O model allows scalable
multicore applications, built as asynchronous message-processing tasks. It has a score of language
APIs and runs on most operating systems (ZeroMQ, 2023).

In this paper, for implementing this protocol, pyzmq (version 25.1.1), which is a package
containing Python bindings for ZeroMQ, has been employed, making use of the pub/sub approach.

oPC UA
OPC is the interoperability standard for the secure and reliable exchange of data in the industrial
automation space and in other industries. The OPC standard is a series of specifications developed
by industry vendors, end-users, and software developers. These specifications define the interface
between clients and servers, as well as between servers and servers, including access to real-time data,
monitoring of alarms and events, access to historical data, and other applications (OPC Foundation,
2023).

Even though OPC UA is used mostly in higher automation levels for the purpose of monitoring
and control, it also increases device connectivity via standard communication in lower automation
levels (Hegazy & Hefeeda, 2015). Therefore, OPC UA was named as candidate for communication
aspects in RAMI4.0. The OPC-UA approach abstracts data from the network technology and software
application and offers a generic communication interface. It can be seen as one of the key technologies
for a transparent data representation/ transmission between heterogeneous system components (Imtiaz
& Jasperneite, 2013). Schleipen et al. (2016) provides detailed information about this protocol. This
protocol has two operational models, server-client and pub/sub. This paper analyzes the server-client
approach, in which each client establishes a connection with a server, as it is the most widely used.
The pub/sub approach uses either UDP or MQTT as transport protocols. For the use presented in
the paper, MQTT is the most suitable one. As results from OPC UA pub/sub based on MQTT would
be remarkably similar to the ones obtained using MQTT, OPC UA pub/sub analysis has not been
included in this paper. In this paper, for implementing the OPC UA standard, the Free OP-CUA
(version 0.90.6) client library for Python has been employed.

ExPERIMEnTAl SETUP

To explore the benefits and drawbacks of the different IIoT protocols introduced in Section 3, under
edge/fog and cloud scenarios, the following two setups, (shown in Figure 2) were employed for
performing different experiments. The experiments consisted of two or three main components,
depending on if the protocols were brokerless or not, and all of them dockerized and launched as
docker containers:

• IIoT device simulator (colored in yellow):
 ◦ Producer: Simulated the generation of high-frequency sensor data and sent data streams to the

AI service located in the edge/fog or cloud. Detailed information about the data generation
is explained in Section 5.

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

8

• AI component (colored in green or blue, depending on the scenario): Simulated an AI service. This
service simply took the data from the IIoT simulator and sent a response back again, simulating
an inference performed by a ML model. As the goal of this research was to evaluate only the
protocols performance, to avoid unnecessary delays due to computational needs, no ML models
were deployed in the edge/fog or cloud.

• IIoT device simulator (colored in yellow):
 ◦ Consumer: Once data was processed by the AI service, the IIoT device simulator received

the response of the AI service corresponding to the previously sent data stream.

The numbers in the corner of the services of the scenarios in Figure 2 represent the moments in
which different times have been measured. These numbers represent the following:

1. Time when a data stream was sent from the IIoT simulator.
2. Time when the data stream was received in the AI service.
3. Time when the data stream was sent back from the AI service to the IIoT simulator.
4. Time when the data stream was received back in the IIoT simulator.

After measuring those times, performing the operation (1), the mean latency values were
calculated.

meanlatency
N

t t t t t t
i

N

i i i i save i i
� (�

, , , , ,
= −()− −()− −(

=
∑
1

1
1

4 3 2 4)))� (1)

where t
n i,

, n=1,2,3,4, is the timestamp corresponding to each of the explained moments corresponding
to a data stream; t

save i,
 is the timestamp when that data stream is saved; and N is the total amount of

streams corresponding to one experiment. By subtracting t t
i i3 2, ,
−() and t t

save i i, ,
−()4 to t t

i i4
1

,
−() ,

we obtain the pure latency of the data stream, without considering the processing times of the IIoT
and AI services. t t

i i3 2, ,
−() represents the processing time of the AI service, and t t

save i i, ,
−()4

represents the processing time of the IIoT simulator, which are values that must not be considered
for the analysis.

Equation (2) is used to calculate the mean jitter:

mean jitter
N

l l
i

N

i i
� �= −()

=

−

+∑
1

1

1

1
 (2)

where l
i
 is the real latency of the corresponding data stream and l

i+1 is the real latency of the next
data stream, both AI service and IIoT simulator processing times subtracted. Thus, we obtain the
jitter corresponding to the protocol.

Moreover, the latency and jitter standard deviation values, not-ordered packages, and lost packages
have been calculated.

In both scenarios, the IIoT simulator service launched under a computer with the following
characteristics to simulate high frequency data: Processor Intel(R) Core(TM) i5-10400 CPU @
2.90GHz, 2904 MHz, 6 Core(s), 12 Logical Processor(s), 16Gb RAM.

As represented in Figure 2, the first scenario simulated an edge/fog computing based scenario,
where the broker, if necessary, and the AI service were launched in the edge/fog server. This edge/

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

9

fog server was simulated with another computer with the same characteristics as employed for the
IIoT simulator. In this case, both computers worked within the same enterprise network. Contrary
to scenario 1, in the second one, the broker, if necessary, and the AI service were launched on a
cloud server. This server corresponded to a T2 medium EC2 instances launched in Amazon AWS
containing 2vCPUs and 4Gb RAM.

METHodology

This section presents the methodology employed to perform the experiments. Table 2 represents
the different experiments performed for each of the communication protocols in both scenarios. In
total, nine different experiments were performed for each protocol, stream size, and frequency, and
consequently the throughput. Thus, we can compare different levels of throughput, which is the best
protocol in different scenarios. For each of the possible throughput, different stream size and sampling
frequency combinations were investigated, to analyze the impact of this combination in different
protocols. The performed experiments used Int32 type data points, corresponding to 4 bytes each
element. Thus, the experiments ranged from 250 kHz to 2 MHz sampling frequency. The authors

Figure 2. Scenarios Employed for Performing the Experiments

Table 2. Experiments Performed for Each of the Tested Protocols in Both Scenarios

THROUGHPUT
(Mbytes/sec)

STREAM SIZE
(Kbytes)

DATA POINTS/
STREAM STREAMS/s SAMPLING

FREQUENCY (kHz)

1 25 6.250 40 250

1 50 12.500 20 250

1 100 25.000 10 250

4 100 25.000 40 1.000

4 200 50.000 20 1.000

4 400 100.000 10 1.000

8 200 50.000 40 2.000

8 400 100.000 20 2.000

8 800 200.000 10 2.000

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

10

believe that this range covers a wide range of possibilities that could be realistic in high-frequency
industrial scenarios.

Each of the experiments was performed with a duration of 30 seconds (cycles). In addition,
to ensure the consistency of the experiments, each of them was performed 45 times, in batches of
15, on different days and times, and the mean of the results was obtained. The mean and standard
deviation latency and jitter distributions were analyzed, to ensure that they were similar and that the
employed network did not distort the results. As the network congestion could not be controlled,
this approach was used to minimize the network performance variability and helps to demonstrate
protocols performance differences in a more realistic manner.

To simulate the generation of data with high precision, the following approach (Figure 3) was
developed. In most cases, the data was generated and sent faster than the theoretical sampling time
of one stream, being equal to 1/SamplingFrequency. However, due to the stochastic nature of the
process, in a few instances it could occur that the data generation and sending lasted more than the
theoretical sampling time. For that reason, an accumulative variable, T, was created to store the
accumulated extra time and to try to compensate that time in future iterations.

As mentioned in Section 1, results absolute time values are highly dependent on the employed
network characteristics and congestion. For that reason, in Section 6 this research presents a normalized
comparison of the protocols` performance. Thus, the mean and standard deviation latency and jitter
values of the presented experiments have been normalized. Moreover, all figures are presented in
logarithmic scale. This helps to clearly visualize the results when values are low. For all the presented
results, not-ordered and lost packages metrics are not shown, as, in all the experiments, there are not
lost or unordered packages.

As explained in Section 3., OP CUA is only tested under edge/fog computing scenarios. In cloud
computing scenarios, this protocol can be implemented with a pub/sub approach employing MQTT.
However, it is not tested, as the obtained results would be remarkably similar to the ones obtained
with Eclipse Mosquitto.

Figure 3. High-Frequency Data Generation Algorithm Pseudocode

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

11

To analyze the computational overhead of each of the protocols, first, edge/fog/cloud device
services memory and CPU utilization without data traffic were measured (see Figure 2). Next, IIoT
and edge/fog/cloud devices services memory and CPU utilization were measured, under 100 Kbytes/s
and 10 streams/s working conditions. To ensure the consistency of the experiments, each of them
was performed 10 times, and the mean of the results was calculated.

RESUlTS

The following section is divided as follows: first, edge/fog experiment results are presented. Next,
cloud experiment results are presented. Tables 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20, in the
Appendix, present edge/fog and cloud scenarios results in terms of absolute and normalized values.
Finally, computational overhead results are shown.

Edge/Fog Experiment Results
Figure 4 compares the IIoT messaging protocols performance for 1Mbytes/s throughput edge/fog
experiments in mean and standard deviation latency terms. To clearly visualize the results, just the
positive values of the standard deviation are represented as vertical black lines just above the bars, not
showing the negative side of them. The legend of the figure is composed of the protocol name, the
stream size value in Kbytes, and the stream frequency. Each of the protocols is shown in a different
color. All the figures from that point on follow the same structure.

Sending 25 Kbytes streams at a frequency of 40 streams/s with MQTT is the scenario that obtains
the lowest latency, closely followed by any of AMQP and ZeroMQ protocols. When employing 100
Kbytes streams at a sampling frequency of 10 streams/second, MQTT protocol is clearly the one
that obtains the lowest latency, being 1.23 times faster than ZeroMQ and at least 2 times faster than
the rest of the protocols.

Figure 5 compares the IIoT messaging protocols performance for 1Mbytes/s throughput edge/
fog experiments in mean and standard deviation jitter terms.

Figure 4. Normalized Latency of 1 MBytes/s Edge/Fog Experiments

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

12

Sending 25 Kbytes streams at a frequency of 40 streams/s, with MQTT protocol, is the scenario
that obtains the lowest jitter, closely followed by AMQP, KAFKA, and ZeroMQ protocols. When
employing 100 Kbytes streams at a sampling frequency of 10 streams/second, MQTT protocol again
obtains the lowest jitter value, being at least 1.395 times lower than the rest of the protocols.

Figure 6 compares the IIoT messaging protocols performance for 4Mbytes/s throughput edge/
fog experiments in mean and standard deviation latency terms.

Sending 100 Kbytes streams at a frequency of 40 streams/s, with ZeroMQ protocol, is the
scenario with the lowest latency, closely followed by AMQP. When employing 400 Kbytes streams
at a sampling frequency of 10 streams/second, MQTT protocol again is one that obtains the lowest
latency, being at least 1.395 times faster than the rest of the protocols.

Figure 7 compares the IIoT messaging protocols performance for 4Mbytes/s throughput edge/
fog experiments in mean and standard deviation jitter terms.

Sending 100 Kbytes streams at a frequency of 40 streams/s, with AMQP protocol, is the scenario
with the lowest jitter, closely followed by KAFKA, MQTT, and ZeroMQ protocols. When employing
400 Kbytes streams at a sampling frequency of 10 streams/second, AMQP protocol again obtains the
lowest latency, being at least 2.17 times lower than the rest of the protocols.

Figure 8 compares the IIoT messaging protocols performance for 8Mbytes/s throughput edge/
fog experiments in mean and standard deviation latency terms.

The scenario with lowest latency is sending 200 Kbytes streams at a frequency of 40 streams/s,
with any of AMQP, or ZEROMQ protocols. However, under thar scenario, AMQP performs 2.65
times better in latency standard deviation terms than ZeroMQ. When employing 800 Kbytes streams
at a sampling frequency of 10 streams/second, AMQP protocol has the lowest latency. While latency
values for that combination of AMQP, MQTT, and ZeroMQ protocols is similar, the standard deviation
of MQTT and ZeroMQ protocols are 4.83 and 6.13 times higher, respectively.

Figure 9 compares the IIoT messaging protocols performance for 8Mbytes/s throughput edge/
fog experiments in mean and standard deviation jitter terms.

Figure 5. Normalized Jitter of 1 MBytes/s Edge/Fog Experiments

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

13

Sending 200 Kbytes streams at a frequency of 40 streams /s, with ZeroMQ and AMQP protocols,
are the scenarios that obtain the lowest jitter. ZeroMQ performs 1.13 times better than MQTT in
terms of jitter under that scenario. When employing 800 Kbytes streams at a sampling frequency of
10 streams/second, AMQP protocol clearly obtains the lowest jitter, being at least 2.53 times lower
than the rest of the protocols.

Figure 6. Normalized Latency of 4 MBytes/s Edge/Fog Experiments

Figure 7. Normalized Jitter of 4 MBytes/s Edge/Fog Experiments

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

14

Cloud Experiment Results
Figure 10 compares the IIoT messaging protocols performance for 1Mbytes/s throughput cloud
experiments in mean and standard deviation latency terms. To clearly visualize the results, just the
positive values of the standard deviation are represented as vertical black lines just above the bars, not
showing the negative side of them. The legend of the figure is composed of the protocol name, the

Figure 8. Normalized Latency of 8 MBytes/s Edge/Fog Experiments

Figure 9. Normalized Jitter of 8 MBytes/s Edge/Fog Experiments

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

15

stream size value in Kbytes, and the stream frequency. Each of the protocols is shown in a different
color. All the figures from this point on will follow the same structure.

ZeroMQ is the protocol that obtains lower latency values, being the most stable one. Moreover, it
is indifferent to the combination of stream size and rate. AMQP protocol, which is the next protocol
obtaining lower latency, obtains at least 1.12 and 4.48 times worse results in mean and standard
deviation latency terms.

Figure 11 compares the IIoT messaging protocols performance for 1Mbytes/s throughput cloud
experiments in mean and standard deviation jitter terms.

Sending 50 Kbytes streams at a frequency of 20 streams /s, with ZeroMQ protocol, is the scenario
that obtains lower jitter value, performing 1.54 times better than the next best combination, 100 Kbytes
streams at a sampling frequency of 10 streams/second with ZeroMQ.

Figure 12 compares the IIoT messaging protocols performance for 4Mbytes/s throughput cloud
experiments in mean and standard deviation latency terms.

The scenario with lowest latency is sending 100 Kbytes streams at a frequency of 40 streams /s,
with ZeroMQ protocol. However, the difference with the rest of the scenarios employing ZeroMQ
is significantly low. Under the 4 Mbytes/s use case, the difference between ZeroMQ and the rest of
the protocols is higher than in the 1 Mbyte/second use case. In mean and standard deviation terms,
ZeroMQ obtains at least 5.14 and 114.05 times lower results than AMQP, respectively. Kafka is
clearly the protocol with worse latency, indicating that it is not suitable for high-frequency scenarios.

Figure 13 compares the IIoT messaging protocols performance for 4Mbytes/s throughput cloud
experiments in mean and standard deviation jitter terms.

Sending 100 Kbytes streams at a frequency of 40 streams/s, with ZeroMQ protocol, is the scenario
that obtains the lowest jitter results. Moreover, ZeroMQ performs better than the rest of the protocols
employing any of the combinations. It performs at least 8.83 and 6.96 times better than AMQP in
mean and standard deviation jitter terms.

Figure 14 compares the IIoT messaging protocols performance for 8Mbytes/s throughput cloud
experiments in mean and standard deviation latency terms.

Figure 10. Normalized Latency of 1 MBytes/s Cloud Experiments

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

16

The scenario that obtains the lowest jitter is sending 200 Kbytes streams at a frequency of 40
streams/s ZEROMQ protocol. However, the difference with the rest of the scenarios employing
ZeroMQ is significantly low. It performs at least 5.46 and 160.88 times better than AMQP in mean

Figure 11. Normalized Jitter of 1 MBytes/s Cloud Experiments

Figure 12. Normalized Latency of 4 MBytes/s Cloud Experiments

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

17

and standard deviation latency terms. Kafka is clearly the protocol that performs worse, indicating
again that it is not suitable for high-frequency scenarios.

Figure 15 compares the IIoT messaging protocols performance for 8Mbytes/s throughput cloud
experiments in mean and standard deviation jitter terms.

Figure 13. Normalized Jitter of 4 MBytes/s Cloud Experiments

Figure 14. Normalized Latency of 8 MBytes/s Cloud Experiments

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

18

Sending 200 Kbytes streams at a frequency of 40 streams/s with ZeroMQ is the scenario that
obtains the lowest jitter. It performs at least 6.23 and 8.03 times better than AMQP in mean and
standard deviation jitter terms.

Computational overhead Results
Table 3 presents the memory usage per service (MB) in the edge/fog/cloud device without data
traffic. For broker-centric protocols, MQTT is the lighter one, employing 118.45 and 424.36 times
less memory than AMQP and KAFKA brokers, respectively. For the AI service, all the protocols
except OP CUA employ a similar amount of memory ZeroMQ being the lighter one. The overhead
of the OP CUA client is due to the way in which it has been implemented, as the server is generating
that overhead.

Table 4 presents the CPU usage per service, in % terms, in the edge/fog/cloud device without
data traffic. For broker-centric protocols, MQTT is most efficient one, while the Kakfa broker is
the most demanding one. For the AI service, MQTT, AMQP, and ZeroMQ employ the lowest CPU.

Figure 15. Normalized Jitter of 8 MBytes/s Cloud Experiments

Table 3. Memory Usage per Service (MB) in the Edge Device Without Data Traffic

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

19

Table 5 presents the memory usage per service (MB) in the IIoT and edge/fog/cloud devices
with data traffic. For broker-centric protocols, MQTT is the lighter one, while KAFKA is the most
memory-demanding one. For the AI service, all the protocols except OP CUA employ a similar amount
of memory, ZeroMQ being the lightest one. Regarding the IIoT producer service, MQTT, AMQP,
and ZeroMQ protocols’ clients employ a similar amount of memory, with KAFKA and OP CUA
protocols’ clients being heavier. Regarding the IIoT consumer service, MQTT, AMQP, KAFKA, and
ZeroMQ protocols’ clients employ a similar amount of memory, with OP CUA client being heavier.

Tables 6 and 7 present the CPU mean and maximum usage per service, in % terms, in the IIoT
and edge/fog/cloud devices with data traffic. For broker-centric protocols, MQTT is most efficient
one, employing 10 times less CPU than AMQP in mean terms. For the AI service, ZeroMQ is the
one that employs the lowest CPU. Regarding the IIoT producer service, there are no significant
differences between the performance among the different protocols. Regarding the IIoT consumer
service, AMQP is the least efficient one and ZeroMQ the most efficient one.

Finally, table 8 provides guidelines for which of the protocols should be used in each of the
scenarios. For a fixed throughput, server location, and objective, the best scenarios are colored green.

ConClUSIon

In this paper, the differences between five different IIoT messaging protocols, AMQP, MQTT, KAFKA,
ZeroMQ, and OP CUA, for high frequency data transmission in edge/fog and cloud scenarios, was
investigated. Mean and standard deviation latency, mean and standard deviation jitter, lost or not-
ordered packages, etc. have been analyzed under different working conditions, varying the throughput
(from 1 to 8 Mbytes per second), sampling frequency, and stream sizes. Moreover, the computational
overhead of each of them was analyzed.

Table 4. CPU Usage per Service (%) in the Edge Device Without Data Traffic

Table 5. Memory Usage per Service (MB) With Data Traffic (100Kbytes Stream Size, 10 Streams/s Conditions)

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

20

In edge/fog computing scenarios, AMQP, MQTT, and ZeroMQ are the protocols that show better
performance. For experiments with the same throughput, the combination of smaller data streams at
higher frequencies yields optimal performance across all three protocols. The three of them are suitable
for soft-real-time scenarios, being able to handle 8 Mbytes/s data throughput. This can be translated
into employing 1 ultrasonic sensor at 1MHz and 20 accelerometers working at 50kHz at the same
time, acquiring 4 bytes data points. Particularly, for smaller data streams with higher frequencies, all
three protocols perform identically. However, for larger data streams employing smaller sampling
rates, AMQP consistently outperforms MQTT and ZEROMQ, emerging as the best choice, especially
in jitter terms. It can be concluded that in this scenario, having a broker-centric architecture does
not affect the performance of the applications. Moreover, in edge/fog scenarios where fewer CPU
resources are usually available, it is advisable to use lighter protocols such as MQTT and ZeroMQ.

For cloud computing scenarios, the results provide valuable insights into the performance of
various protocols. ZeroMQ and AMQP are the protocols that show better performance.

For lower (1 Mbyte/sec) throughput experiments, ZeroMQ exhibits slightly lower mean latency,
but significantly higher stability over time in terms of latency standard deviation. As throughput
increases, the differences between ZeroMQ and the rest of the protocols increases.

For higher (4 Mbyte/sec and 8 Mbyte/sec) throughput, ZeroMQ consistently outperforms
the rest of the protocols in all aspects, showing significantly lower standard deviation in latency
standard deviation. The best combination is sending smaller streams at a higher sampling frequency,
demonstrating superior jitter performance compared to larger streams at lower frequencies. It can
be concluded that in this scenario, having a broker-centric architecture affects the performance of
the applications. On the other hand, the results indicate that ZeroMQ is appropriate for building soft
real-time edge/fog computing applications for industry.

Future work will begin validating the presented results, working with different libraries for
implementing the protocols, such as Redpanda for Kafka and QuickOPC for OP CUA pub/sub.

Table 6. Mean CPU Usage per Service (%) With Data Traffic (100Kbytes Stream Size, 10 Streams/s Conditions)

Table 7. Maximum CPU Usage per Service (%) With Data Traffic (100Kbytes Stream Size, 10 Streams/s Conditions)

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

21

Moreover, the results will be validated under a real industrial scenario, acquiring high-frequency
signals and processing them in real time. Thus, the IIoT simulator will be replaced by a data acquisition
device, acquiring high-frequency signals from different sources such as accelerometers, acoustic
emissions sensors, and energy meters. The AI simulator will be replaced by a real data-based model
that will be deployed at the edge/fog/cloud, and the inference of the model will be employed for
sending orders to a machine and generating alerts.

AUTHoR ConTRIBUTIonS

Conceptualization: Ander García and Telmo Fernández de Barrena; Methodology: Telmo Fernández
de Barrena; Software: Telmo Fernández de Barrena; Validation: Telmo Fernández De Barrena;
Formal Analysis: Telmo Fernández De Barrena; Investigation: Telmo Fernández de Barrena; Data
Curation: Telmo Fernández de Barrena; Writing—Original Draft Preparation: Telmo Fernández de
Barrena; Writing—Review And Editing: Ander García, Juan Luis Ferrando, and Telmo Fernández
de Barrena; Visualization: Telmo Fernández de Barrena; Supervision: Ander García and Juan Luis
Ferrando; Project Administration: Ander García.

FUndIng

This research was partially funded by the Department of Industry of the Basque Government within
Elkartek programs (KK-2022/00119 and KK-2023/00038).

Table 8. Which Protocol, Stream Size, and Rate Combination to Use in Different Scenarios

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

22

dATA AvAIlABIlITy STATEMEnT

The code employed for replicating the experiments and data presented in this study are available at
https://github.com/Vicomtech/IIOT-protocols-study-for-high-frequency-data-in-the-edge-and-cloud/
tree/main

ConFlICTS oF InTEREST

The authors declare no conflicts of interest.

https://github.com/Vicomtech/IIOT-protocols-study-for-high-frequency-data-in-the-edge-and-cloud/tree/main
https://github.com/Vicomtech/IIOT-protocols-study-for-high-frequency-data-in-the-edge-and-cloud/tree/main

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

23

REFEREnCES

Alshehri, F., & Muhammad, G. (2021). A Comprehensive survey of the internet of things (IoT) and AI-
based smart healthcare. IEEE Access : Practical Innovations, Open Solutions, 9, 3660–3678. doi:10.1109/
ACCESS.2020.3047960

Apache Software Foundation. (2023). Apache Kafka. https//:kafka.apache.org

AQMP. (2023). AQMP.is the internet protocol for business messaging. https://www.amqp.org/about/what

Bayılmış, C., Ebleme, M. A., Çavuşoğlu, Ü., Küçük, K., & Sevin, A. (2022). A survey on communication
protocols and performance evaluations for Internet of Things. Digital Communications and Networks, 8(6),
1094–1104. doi:10.1016/j.dcan.2022.03.013

Chaudhary, A., Peddoju, S. K., & Kadarla, K. (2017). Study of Internet-of-Things messaging protocols used
for exchanging data with external sources. In 2017 IEEE 14th International Conference on Mobile Ad Hoc and
Sensor Systems (MASS) (pp. 666–671). IEEE. doi:10.1109/MASS.2017.85

Dizdarević, J., Carpio, F., Jukan, A., & Masip-Bruin, X. (2019). A survey of communication protocols for
Internet of Things and related challenges of fog and cloud computing integration. ACM Computing Surveys,
51(6), 1–29. doi:10.1145/3292674

Fernández de Barrena, T., Ferrando, J. L., García, A., Badiola, X., de Buruaga, M. S., & Vicente, J. (2023). Tool
remaining useful life prediction using bidirectional recurrent neural networks (BRNN). International Journal of
Advanced Manufacturing Technology, 125(9–10), 4027–4045. doi:10.1007/s00170-023-10811-9

Foundation, O. P. C. Unified Architecture (2023). https://opcfoundation.org/about/opc-technologies/opc-ua/

Garcia, A., Fernández de Barrena, T., Chacón, J. L. F., Oregui, X., & Etxegoin, Z. (2023). Edge architecture
for the integration of soft models based industrial AI control into Industry 4.0 cyber-physical systems. Lecture
Notes in Networks and Systems, 750 LNNS, 67–76. 10.1007/978-3-031-42536-3_7

Gavrilov, A., Bergaliyev, M., Tinyakov, S., Krinkin, K., & Popov, P. (2022). Using IoT protocols in real-time
systems: Protocol analysis and evaluation of data transmission characteristics. Journal of Computer Networks
and Communications, 2022, 1–18. Advance online publication. doi:10.1155/2022/7368691

Hegazy, T., & Hefeeda, M. (2015). Industrial automation as a cloud service. IEEE Transactions on Parallel and
Distributed Systems, 26(10), 2750–2763. doi:10.1109/TPDS.2014.2359894

Imtiaz, J., & Jasperneite, J. (2013). Scalability of OPC-UA down to the chip level enables “Internet of Things.” In
2013 11th IEEE International Conference on Industrial Informatics (INDIN) (pp. 500–505). IEEE. doi:10.1109/
INDIN.2013.6622935

Ionescu, V. M. (2015). The analysis of the performance of RabbitMQ and ActiveMQ. In 2015 14th RoEduNet
International Conference - Networking in Education and Research (RoEduNet NER) (pp. 132–137). IEEE.
doi:10.1109/RoEduNet.2015.7311982

Kang, Z., Canaday, R., Dubey, A., Gokhale, A., Shekhar, S., & Selacek, M. (2020). Evaluating DDS, MQTT,
and ZeroMQ Under Different IoT Traffic Conditions. In M4IoT ’20: Proceedings of the International Workshop
on Middleware and Applications for the Internet of Things (pp. 7‒12). Association for Computing Machinery.
doi:10.1145/3429881.3430109

Kumar, R., & Agrawal, N. (2023). Analysis of multi-dimensional Industrial IoT (IIoT) data in Edge–Fog–Cloud
based architectural frameworks: A survey on current state and research

Kuntoğlu, M., Salur, E., Gupta, M. K., Sarıkaya, M., & Pimenov, D. Yu. (2021). A state-of-the-art review on
sensors and signal processing systems in mechanical machining processes. International Journal of Advanced
Manufacturing Technology, 116(9–10), 2711–2735. doi:10.1007/s00170-021-07425-4 PMID:34092883

Lazidis, A., Tsakos, K., & Petrakis, E. G. M. (2022). Publish–Subscribe approaches for the IoT and the cloud:
Functional and performance evaluation of open-source systems. Internet of Things : Engineering Cyber Physical
Human Systems, 19, 100538. doi:10.1016/j.iot.2022.100538

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. doi:10.1038/nature14539
PMID:26017442

http://dx.doi.org/10.1109/ACCESS.2020.3047960
http://dx.doi.org/10.1109/ACCESS.2020.3047960
http://https//:kafka.apache.org
https://www.amqp.org/about/what
http://dx.doi.org/10.1016/j.dcan.2022.03.013
http://dx.doi.org/10.1109/MASS.2017.85
http://dx.doi.org/10.1145/3292674
http://dx.doi.org/10.1007/s00170-023-10811-9
https://opcfoundation.org/about/opc-technologies/opc-ua/
http://dx.doi.org/10.1155/2022/7368691
http://dx.doi.org/10.1109/TPDS.2014.2359894
http://dx.doi.org/10.1109/INDIN.2013.6622935
http://dx.doi.org/10.1109/INDIN.2013.6622935
http://dx.doi.org/10.1109/RoEduNet.2015.7311982
http://dx.doi.org/10.1145/3429881.3430109
http://dx.doi.org/10.1007/s00170-021-07425-4
http://www.ncbi.nlm.nih.gov/pubmed/34092883
http://dx.doi.org/10.1016/j.iot.2022.100538
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

24

Lombardi, M., Pascale, F., & Santaniello, D. (2021). Internet of Things: A general overview between architectures,
protocols and applications. Information (Basel), 12(2), 87. doi:10.3390/info12020087

Mao, S., He, S., & Wu, J. (2021). Joint UAV position optimization and resource scheduling in space-air-ground
integrated networks with mixed cloud-edge computing. IEEE Systems Journal, 15(3), 3992–4002. doi:10.1109/
JSYST.2020.3041706

Mao, S., Wu, J., Liu, L., Lan, D., & Taherkordi, A. (2022). Energy-efficient cooperative communication and
computation for wireless powered mobile-edge computing. IEEE Systems Journal, 16(1), 287–298. doi:10.1109/
JSYST.2020.3020474

MQTT. MQTT: The Standard for IoT Messaging. (2022). https://mqtt.org/

Naik, N. (2017). Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and
HTTP.In 2017 IEEE International Systems Engineering Symposium (ISSE) (pp. 1–7). IEEE. doi:10.1109/
SysEng.2017.8088251

Nam, J., Jun, Y., & Choi, M. (2022). High performance IoT cloud computing framework using Pub/Sub techniques.
Applied Sciences (Basel, Switzerland), 12(21), 11009. doi:10.3390/app122111009

Nath, S. V., Dunkin, A., Chowdhary, M., & Patel, N. (2020). Industrial Digital Transformation. Packt Publishing.
https://books.google.es/books?hl=es&lr=&id=26EGEAAAQBAJ&oi=fnd&pg=PP1&dq=Digital+Transform
ation+in+Manufacturing:+Gaining+a+Competitive+Edge+Through+IoT+and+the+AI&ots=Hfs8q4vPYR&
sig=IIsOQ35sG7HJQ7zkrBf6cZWRgyY#v=onepage&q&f=false

Oñate, W., & Sanz, R. (2023). Analysis of architectures implemented for IIoT. Heliyon, 9(1), e12868.
doi:10.1016/j.heliyon.2023.e12868 PMID:36691530

Profanter, S., Tekat, A., Dorofeev, K., Rickert, M., & Knoll, A. (2019). OPC UA versus ROS, DDS, and MQTT:
Performance evaluation of industry 4.0 protocols. In Proceedings of the 2019 IEEE International Conference
on Industrial Technology (pp. 955–962). IEEE. doi:10.1109/ICIT.2019.8755050

Sarafov, V. (2018). Comparison of IoT Data Protocol Overhead. Proceedings of the Seminars Future Internet
(FI) and Innovative Internet Technologies and Mobile Communications (IITM) Scimago, 7–14. doi:10.2313/
NET-2018-03-1_02

Schleipen, M., Gilani, S.-S., Bischoff, T., & Pfrommer, J. (2016). OPC UA & Industrie 4.0—Enabling technology
with high diversity and variability. Procedia CIRP, 57, 315–320. doi:10.1016/j.procir.2016.11.055

Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of
Things Journal, 3(5), 637–646. doi:10.1109/JIOT.2016.2579198

Suri, N., Breedy, M. R., Marcus, K. M., Fronteddu, R., Cramer, E., Morelli, A., Campioni, L., Provosty, M.,
Enders, C., Tortonesi, M., & Nilsson, J. (2019). Experimental Evaluation of group communications protocols
for data dissemination at the tactical edge. In 2019 International Conference on Military Communications and
Information Systems (ICMCIS) (pp. 1–8). IEEE. doi:10.1109/ICMCIS.2019.8842801

Ullah, M., Kakakhel, S. R. U., Westerlund, T., Wolff, A., Carrillo, D., Plosila, J., & Nardelli, P. H. J. (2020).
IoT protocol selection for smart grid applications: Merging qualitative and quantitative metrics. In 2020 43rd
International Convention on Information, Communication and Electronic Technology, MIPRO 2020 - Proceedings
(ppl 993–998). IEEE. doi:10.23919/MIPRO48935.2020.9245238

Zero MQ, ZeroMQ. (2023). https//:zeromq.org

http://dx.doi.org/10.3390/info12020087
http://dx.doi.org/10.1109/JSYST.2020.3041706
http://dx.doi.org/10.1109/JSYST.2020.3041706
http://dx.doi.org/10.1109/JSYST.2020.3020474
http://dx.doi.org/10.1109/JSYST.2020.3020474
https://mqtt.org/
http://dx.doi.org/10.1109/SysEng.2017.8088251
http://dx.doi.org/10.1109/SysEng.2017.8088251
http://dx.doi.org/10.3390/app122111009
https://books.google.es/books?hl=es&lr=&id=26EGEAAAQBAJ&oi=fnd&pg=PP1&dq=Digital+Transformation+in+Manufacturing:+Gaining+a+Competitive+Edge+Through+IoT+and+the+AI&ots=Hfs8q4vPYR&sig=IIsOQ35sG7HJQ7zkrBf6cZWRgyY#v=onepage&q&f=false
https://books.google.es/books?hl=es&lr=&id=26EGEAAAQBAJ&oi=fnd&pg=PP1&dq=Digital+Transformation+in+Manufacturing:+Gaining+a+Competitive+Edge+Through+IoT+and+the+AI&ots=Hfs8q4vPYR&sig=IIsOQ35sG7HJQ7zkrBf6cZWRgyY#v=onepage&q&f=false
https://books.google.es/books?hl=es&lr=&id=26EGEAAAQBAJ&oi=fnd&pg=PP1&dq=Digital+Transformation+in+Manufacturing:+Gaining+a+Competitive+Edge+Through+IoT+and+the+AI&ots=Hfs8q4vPYR&sig=IIsOQ35sG7HJQ7zkrBf6cZWRgyY#v=onepage&q&f=false
http://dx.doi.org/10.1016/j.heliyon.2023.e12868
http://www.ncbi.nlm.nih.gov/pubmed/36691530
http://dx.doi.org/10.1109/ICIT.2019.8755050
http://dx.doi.org/10.2313/NET-2018-03-1_02
http://dx.doi.org/10.2313/NET-2018-03-1_02
http://dx.doi.org/10.1016/j.procir.2016.11.055
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/ICMCIS.2019.8842801
http://dx.doi.org/10.23919/MIPRO48935.2020.9245238
http://https//:zeromq.org

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

25

APPEndIx

Table 9. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Absolute (ms) Values Under 1 Mbyte/s Edge/
Fog Computing Scenario

AMQP KAFKA MQTT OP CUA ZEROMQ

Stream size_rate

25
_4

0

50
_2

0

10
0_

10

25
_4

0

50
_2

0

10
0_

10

25
_4

0

50
_2

0

10
0_

10

25
_4

0

50
_2

0

10
0_

10

25
_4

0

50
_2

0

10
0_

10

latency

4.
09

9

5.
57

5

11
.7

35

14
.0

90

15
.0

89

20
.6

08

3.
64

3

4.
39

1

6.
48

3

21
8.

68
2

23
2.

84
0

24
4.

39
1

3.
91

9

5.
07

8

7.
80

5

latency_stdev

1.
48

1

1.
82

0

2.
81

3

1.
40

0

3.
64

1

21
.9

71

1.
40

4

2.
47

5

3.
55

0

86
.0

84

86
.1

03

79
.0

00

1.
25

0

3.
74

4

11
.2

46

jitter

0.
98

7

1.
31

2

2.
99

2

0.
92

5

1.
68

1

5.
38

7

0.
83

1

1.
23

0

2.
14

6

43
.9

60

75
.8

54

10
3.

33
8

1.
03

6

1.
77

3

4.
31

6

jitter_stdev

1.
94

6

2.
53

5

3.
86

8

1.
97

0

5.
15

9

21
.7

81

1.
91

3

3.
48

3

4.
61

5

68
.1

91

90
.3

24

10
5.

89
7

1.
73

6

5.
27

8

15
.7

99

Table 10. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Normalized Values Under 1 Mbyte/s Edge/
Fog Computing Scenario

AMQP KAFKA MQTT OP CUA ZEROMQ

Stream
size_rate 25

_4
0

50
_2

0

10
0_

10

25
_4

0

50
_2

0

10
0_

10

25
_4

0

50
_2

0

10
0_

10

25
_4

0

50
_2

0

10
0_

10

25
_4

0

50
_2

0

10
0_

10
latency

0.
01

7

0.
02

3

0.
04

8

0.
05

8

0.
06

2

0.
08

4

0.
01

5

0.
01

8

0.
02

7

0.
89

5

0.
95

3

1.
00

0

0.
01

6

0.
02

1

0.
03

2

latency_stdev

0.
01

7

0.
02

1

0.
03

3

0.
01

6

0.
04

2

0.
25

5

0.
01

6

0.
02

9

0.
04

1

1.
00

0

1.
00

0

0.
91

7

0.
01

5

0.
04

3

0.
13

1

jitter

0.
01

0

0.
01

3

0.
02

9

0.
00

9

0.
01

6

0.
05

2

0.
00

8

0.
01

2

0.
02

1

0.
42

5

0.
73

4

1.
00

0

0.
01

0

0.
01

7

0.
04

2

jitter_stdev

0.
01

8

0.
02

4

0.
03

7

0.
01

9

0.
04

9

0.
20

6

0.
01

8

0.
03

3

0.
04

4

0.
64

4

0.
85

3

1.
00

0

0.
01

6

0.
05

0

0.
14

9

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

26

Table 12. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Normalized Values Under 4 Mbyte/s Edge/
Fog Computing Scenario

AMQP KAFKA MQTT OP CUA ZEROMQ

Stream
size_rate 10

0_
40

20
0_

20

40
0_

10

10
0_

40

20
0_

20

40
0_

10

10
0_

40

20
0_

20

40
0_

10

10
0_

40

20
0_

20

40
0_

10

10
0_

40

20
0_

20

40
0_

10

latency

0.
01

8

0.
02

9

0.
05

1

0.
05

4

0.
06

9

0.
08

9

0.
02

3

0.
03

5

0.
04

8

0.
96

2

0.
96

5

1.
00

0

0.
01

6

0.
03

8

0.
05

7

latency_stdev

0.
01

7

0.
03

3

0.
03

0

0.
06

1

0.
15

6

0.
25

9

0.
05

0

0.
18

7

0.
21

3

0.
96

5

1.
00

0

0.
99

9

0.
02

1

0.
26

7

0.
27

5

jitter

0.
00

9

0.
02

1

0.
02

6

0.
01

1

0.
03

1

0.
05

8

0.
01

2

0.
02

9

0.
05

7

0.
39

9

0.
69

7

1.
00

0

0.
01

1

0.
03

7

0.
07

2

jitter_stdev

0.
02

0

0.
03

9

0.
03

5

0.
03

6

0.
10

6

0.
21

7

0.
02

7

0.
11

5

0.
18

2

0.
60

9

0.
81

2

1.
00

0

0.
02

4

0.
15

7

0.
23

4

Table 11. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Absolute (ms) Values Under 4 Mbyte/s
Edge/Fog Computing Scenario

AMQP KAFKA MQTT OP CUA ZEROMQ

Stream
size_rate 10

0_
40

20
0_

20

20
0_

20

10
0_

40

20
0_

20

20
0_

20

10
0_

40

20
0_

20

20
0_

20

10
0_

40

20
0_

20

20
0_

20

10
0_

40

20
0_

20

20
0_

20

latency

5.
13

3

8.
07

0

14
.5

58

15
.3

77

19
.4

91

25
.2

53

6.
50

6

9.
82

3

13
.7

10

27
2.

19
2

27
3.

09
0

28
2.

95
3

4.
56

3

10
.7

70

16
.0

05

latency_
stdev 1.

77
7

3.
42

3

3.
08

7

6.
36

3

16
.2

19

26
.8

96

5.
17

1

19
.3

94

22
.1

22

10
0.

16
8

10
3.

81
7

10
3.

73
0

2.
19

7

27
.7

61

28
.5

55

jitter

1.
03

9

2.
35

2

2.
90

4

1.
19

9

3.
42

2

6.
45

9

1.
28

4

3.
24

3

6.
29

8

44
.4

69

77
.6

85

11
1.

40
9

1.
20

3

4.
10

1

8.
00

4

jitter_stdev

2.
46

2

4.
80

8

4.
31

4

4.
39

3

12
.9

62

26
.5

67

3.
35

4

14
.0

70

22
.2

89

74
.4

26

99
.3

41

12
2.

30
6

2.
99

3

19
.2

42

28
.6

58

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

27

Table 13. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Absolute (ms) Values Under 8 Mbyte/s
Edge/Fog Computing Scenario

AMQP KAFKA MQTT OP CUA ZEROMQ

Stream
size_rate 20

0_
40

40
0_

20

80
0_

10

20
0_

40

40
0_

20

80
0_

10

20
0_

40

40
0_

20

80
0_

10

20
0_

40

40
0_

20

80
0_

10

20
0_

40

40
0_

20

80
0_

10

latency

6.
57

7

12
.6

23

18
.7

79

18
.1

98

27
.6

54

39
.8

64

10
.1

21

13
.5

10

23
.4

78

36
5.

46
8

38
1.

74
7

39
2.

33
5

6.
11

7

22
.0

48

23
.7

27

latency_
stdev 2.

72
1

17
.0

25

7.
44

4

15
.8

86

35
.9

51

69
.2

94

14
.7

40

23
.2

79

36
.4

66

12
1.

80
0

13
3.

09
7

13
0.

95
5

7.
23

8

49
.3

28

45
.5

39

jitter

1.
52

2

3.
59

9

3.
97

8

1.
92

2

6.
87

7

11
.8

97

1.
68

7

4.
17

6

10
.1

66

45
.0

47

80
.7

67

12
3.

56
1

1.
48

3

8.
93

2

12
.6

16

jitter_stdev

3.
80

2

13
.1

06

10
.0

28

8.
45

3

25
.4

92

39
.7

86

7.
13

8

16
.3

17

33
.3

05

81
.7

16

11
3.

67
1

14
5.

64
7

4.
87

8

33
.5

48

42
.6

03

Table 14. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Normalized Values Under 8 Mbyte/s Edge/
Fog Computing Scenario

AMQP KAFKA MQTT OP CUA ZEROMQ

Stream
size_rate 20

0_
40

40
0_

20

80
0_

10

20
0_

40

40
0_

20

80
0_

10

20
0_

40

40
0_

20

80
0_

10

20
0_

40

40
0_

20

80
0_

10

20
0_

40

40
0_

20

80
0_

10

latency

0.
01

7

0.
03

2

0.
04

8

0.
04

6

0.
07

0

0.
10

2

0.
02

6

0.
03

4

0.
06

0

0.
93

2

0.
97

3

1.
00

0

0.
01

6

0.
05

6

0.
06

0

latency_
stdev 0.

02
0

0.
12

8

0.
05

6

0.
11

9

0.
27

0

0.
52

1

0.
11

1

0.
17

5

0.
27

4

0.
91

5

1.
00

0

0.
98

4

0.
05

4

0.
37

1

0.
34

2

jitter

0.
01

2

0.
02

9

0.
03

2

0.
01

6

0.
05

6

0.
09

6

0.
01

4

0.
03

4

0.
08

2

0.
36

5

0.
65

4

1.
00

0

0.
01

2

0.
07

2

0.
10

2

jitter_stdev

0.
02

6

0.
09

0

0.
06

9

0.
05

8

0.
17

5

0.
27

3

0.
04

9

0.
11

2

0.
22

9

0.
56

1

0.
78

0

1.
00

0

0.
03

3

0.
23

0

0.
29

3

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

28

Table 18. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Normalized Values Under 4 Mbyte/s Cloud
Computing Scenario

AMQP KAFKA MQTT ZEROMQ

Stream
size_rate 100_40 200_20 400_10 100_40 200_20 400_10 100_40 200_20 400_10 100_40 200_20 400_10

latency 0.048 0.036 0.047 0.887 1.000 0.250 0.094 0.056 0.099 0.007 0.007 0.008

latency_stdev 0.130 0.091 0.136 0.889 1.000 0.298 0.257 0.138 0.309 0.001 0.001 0.001

jitter 0.100 0.075 0.135 0.569 1.000 0.485 0.426 0.539 0.187 0.008 0.018 0.025

jitter_stdev 0.132 0.111 0.216 0.756 1.000 0.383 0.318 0.357 0.272 0.016 0.025 0.024

Table 15. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Absolute (ms) Values Under 1 Mbyte/s
Cloud Computing Scenario

AMQP KAFKA MQTT ZEROMQ

Stream
size_rate 25_40 50_20 100_10 25_40 50_20 100_10 25_40 50_20 100_10 25_40 50_20 100_10

latency 47.536 48.676 53.132 78.688 60.760 66.518 98.278 98.552 60.613 43.572 42.509 43.917

latency_stdev 6.890 6.589 22.129 28.496 27.828 40.661 32.172 44.759 56.284 4.053 1.470 1.473

jitter 1.275 1.347 2.180 19.749 1.797 3.242 36.259 44.861 3.414 2.405 0.865 1.321

jitter_stdev 3.998 3.386 4.732 20.264 6.087 10.643 40.954 46.496 18.926 4.623 1.782 1.953

Table 17. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Absolute (ms) Values Under 4 Mbyte/s
Cloud Computing Scenario

AMQP KAFKA MQTT ZEROMQ

Stream
size_rate 100_40 200_20 400_10 100_40 200_20 400_10 100_40 200_20 400_10 100_40 200_20 400_10

latency 295.744 219.556 288.377 5476.131 6174.601 1542.460 579.785 347.323 611.866 42.695 44.926 47.390

latency_stdev 369.336 258.025 386.838 2520.044 2834.921 844.624 727.823 390.823 876.579 2.285 2.994 2.262

jitter 8.559 6.363 11.549 48.493 85.241 41.303 36.334 45.935 15.936 0.720 1.567 2.102

jitter_stdev 17.084 14.377 28.078 98.226 129.875 49.682 41.242 46.387 35.277 2.065 3.272 3.106

Table 16. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Normalized Values Under 1 Mbyte/s Cloud
Computing Scenario

AMQP KAFKA MQTT ZEROMQ

Stream size_
rate 25_40 50_20 100_10 25_40 50_20 100_10 25_40 50_20 100_10 25_40 50_20 100_10

latency 0.482 0.494 0.539 0.798 0.617 0.675 0.997 1.000 0.615 0.442 0.431 0.446

latency_stdev 0.122 0.117 0.393 0.506 0.494 0.722 0.572 0.795 1.000 0.072 0.026 0.026

jitter 0.028 0.030 0.049 0.440 0.040 0.072 0.808 1.000 0.076 0.054 0.019 0.029

jitter_stdev 0.086 0.073 0.102 0.436 0.131 0.229 0.881 1.000 0.407 0.099 0.038 0.042

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

29

Table 19. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Absolute (ms) Values Under 8 Mbyte/s
Cloud Computing Scenario

AMQP KAFKA MQTT ZEROMQ

Stream
size_rate 20

0_
40

40
0_

20

80
0_

10

20
0_

40

40
0_

20

80
0_

10

20
0_

40

40
0_

20

80
0_

10

20
0_

40

40
0_

20

80
0_

10

latency

24
0.

58
4

28
2.

06
1

24
8.

58
9

22
80

1.
20

27
10

6.
19

1

25
01

5.
24

6

17
21

.3
71

10
31

.9
07

14
22

.7
43

44
.2

51

46
.6

33

50
.9

16

latency_stdev

30
4.

37
1

36
2.

12
5

29
4.

30
1

12
18

9.
81

7

14
30

1.
68

0

13
82

9.
16

1

19
54

.2
88

12
65

.3
50

15
87

.5
41

1.
97

9

1.
82

9

2.
28

2

jitter

7.
58

7

11
.0

21

19
.0

08

69
.7

52

12
5.

55
6

16
1.

96
2

36
.2

99

47
.2

91

28
.4

77

1.
21

7

1.
34

7

2.
15

7

jitter_stdev

17
.0

98

28
.9

09

54
.6

32

12
5.

42
6

16
5.

20
1

19
.8

96

41
.2

19

49
.2

07

53
.4

72

2.
36

2

2.
12

8

3.
11

8

Table 20. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Normalized Values Under 8 Mbyte/s Cloud
Computing Scenario

AMQP KAFKA MQTT ZEROMQ

Stream
size_rate 20

0_
40

40
0_

20

80
0_

10

20
0_

40

40
0_

20

80
0_

10

20
0_

40

40
0_

20

80
0_

10

20
0_

40

40
0_

20

80
0_

10

latency

0.
00

89

0.
01

04

0.
00

92

0.
84

12

1.
00

00

0.
92

29

0.
06

35

0.
03

81

0.
05

25

0.
00

16

0.
00

17

0.
00

19

latency_stdev

0.
02

13

0.
02

53

0.
02

06

0.
85

23

1.
00

00

0.
96

70

0.
13

66

0.
08

85

0.
11

10

0.
00

01

0.
00

01

0.
00

02

jitter

0.
04

68

0.
06

81

0.
11

74

0.
43

07

0.
77

52

1.
00

00

0.
22

41

0.
29

20

0.
17

58

0.
00

75

0.
00

83

0.
01

33

jitter_stdev

0.
10

35

0.
17

50

0.
33

07

0.
75

92

1.
00

00

0.
12

04

0.
24

95

0.
29

79

0.
32

37

0.
01

43

0.
01

29

0.
01

89

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

30

Telmo Fernández De Barrena Sarasola studied the degree of Industrial Organization Engineering at Tecnun -
School of Engineering, University of Navarra (2016-2020). As a final degree project she conducted a study on the
existing roles and necessary skills of the different professional profiles in the field of data science. Subsequently,
she completed the Dual University Master in Digital Manufacturing (2020-2022) at the IMH (UPV). The final master’s
project was carried out in collaboration with the Vicomtech research center during a 2-year stay at the center. This
project consisted of advanced signal preprocessing and development of data-driven models for wear monitoring
of cutting inserts on a lathe. Since September 2022 he has been working as a research assistant at Vicomtech,
in the Data Intelligence for Energy and Industrial Processes department, in the areas of predictive maintenance,
ML model monitoring, development of architectures for data management and processing, and development of
optimization systems. He is currently a PhD student with the University of Deusto.

Ander García (male) studied Telecommunication Engineering between 1997 and 2002 at the University of the
Basque Country. He obtained his PhD from the same university in 2011. His thesis, which was focused on the
application of operations research optimization algorithms, was entitled “Intelligent Personalised Tourist Route
Generation”. Since 2003 he has worked at Vicomtech as a senior researcher and project manager of several
projects. After leading the leading the Intelligent Manufacturing research line, currently he works at the Data
Intelligence for Energy and Industrial Processes department, leading the Connectivity and Cloud/Edge research
line. He has been an associated professor of Data Base and Software Engineering at the Computer Science
Language and Systems department of the University of the Basque Country during 2005, 2006, 2007, 2008, 2009
and 2016. Since 2022 he is an associated professor at the Computer Science Faculty of the University of Deusto.

Juan Luis holds a diploma (MEng) of Electric, Electronic and Automation Engineering and a diploma (BEng) of
Electronic engineering. He obtained his PhD in 2015 in the area of signal processing and non-destructive testing
and was awarded as ‘Best PhD Student of the year’ by the British institution ‘The Welding Institute’ in 2014. He
has published more than 15 scientific articles in international journals and conferences. He has over 12 years of
research experience, in areas such as predictive modelling, signal processing and machine learning. Juan Luis
has leaded numerous proposals for national and international projects. From 2018 Juan Luis works as senior
researcher in the Data Intelligence for Energy and Industrial processes department, at Vicomtech Research Centre.

